3.21.74 \(\int \frac {(d+e x)^{5/2}}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [2074]

Optimal. Leaf size=48 \[ -\frac {2 (d+e x)^{3/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \]

[Out]

-2/3*(e*x+d)^(3/2)/c/d/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {662} \begin {gather*} -\frac {2 (d+e x)^{3/2}}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(5/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin {align*} \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac {2 (d+e x)^{3/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 37, normalized size = 0.77 \begin {gather*} -\frac {2 (d+e x)^{3/2}}{3 c d ((a e+c d x) (d+e x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(5/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2))/(3*c*d*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.73, size = 42, normalized size = 0.88

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}}{3 \sqrt {e x +d}\, \left (c d x +a e \right )^{2} c d}\) \(42\)
gosper \(-\frac {2 \left (c d x +a e \right ) \left (e x +d \right )^{\frac {5}{2}}}{3 d c \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/(e*x+d)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)/(c*d*x+a*e)^2/c/d

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 30, normalized size = 0.62 \begin {gather*} -\frac {2}{3 \, {\left (c^{2} d^{2} x + a c d e\right )} \sqrt {c d x + a e}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

-2/3/((c^2*d^2*x + a*c*d*e)*sqrt(c*d*x + a*e))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 107 vs. \(2 (44) = 88\).
time = 3.07, size = 107, normalized size = 2.23 \begin {gather*} -\frac {2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d}}{3 \, {\left (c^{3} d^{4} x^{2} + a^{2} c d x e^{3} + {\left (2 \, a c^{2} d^{2} x^{2} + a^{2} c d^{2}\right )} e^{2} + {\left (c^{3} d^{3} x^{3} + 2 \, a c^{2} d^{3} x\right )} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

-2/3*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d)/(c^3*d^4*x^2 + a^2*c*d*x*e^3 + (2*a*c^2*d^2*x^2
 + a^2*c*d^2)*e^2 + (c^3*d^3*x^3 + 2*a*c^2*d^3*x)*e)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.91, size = 88, normalized size = 1.83 \begin {gather*} -\frac {2 \, e^{2}}{3 \, {\left (\sqrt {-c d^{2} e + a e^{3}} c^{2} d^{3} - \sqrt {-c d^{2} e + a e^{3}} a c d e^{2}\right )}} - \frac {2 \, e^{3}}{3 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

-2/3*e^2/(sqrt(-c*d^2*e + a*e^3)*c^2*d^3 - sqrt(-c*d^2*e + a*e^3)*a*c*d*e^2) - 2/3*e^3/(((x*e + d)*c*d*e - c*d
^2*e + a*e^3)^(3/2)*c*d)

________________________________________________________________________________________

Mupad [B]
time = 1.06, size = 110, normalized size = 2.29 \begin {gather*} -\frac {2\,\sqrt {d+e\,x}\,\sqrt {c\,d^2\,x+c\,d\,e\,x^2+a\,d\,e+a\,e^2\,x}}{3\,\left (a^2\,c\,d^2\,e^2+a^2\,c\,d\,e^3\,x+2\,a\,c^2\,d^3\,e\,x+2\,a\,c^2\,d^2\,e^2\,x^2+c^3\,d^4\,x^2+c^3\,d^3\,e\,x^3\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(5/2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2),x)

[Out]

-(2*(d + e*x)^(1/2)*(a*d*e + a*e^2*x + c*d^2*x + c*d*e*x^2)^(1/2))/(3*(c^3*d^4*x^2 + a^2*c*d^2*e^2 + c^3*d^3*e
*x^3 + 2*a*c^2*d^3*e*x + a^2*c*d*e^3*x + 2*a*c^2*d^2*e^2*x^2))

________________________________________________________________________________________